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AGI (Artificial General Intelligence): Hypothetical future 
artificial intelligence that would equal or surpass human 
intelligence in any intellectual domain, capable of performing 
any intellectual task that a human can do.  

Hallucinations: The generation of information or content by an 
LLM that appears plausible but is not based on actual facts or 
knowledge acquired during training, leading to inaccuracies or 
inventions in the model's responses. 

CNN (Convolutional Neural Network): A type of neural 
network specialized in processing data with a grid topology, 
such as images or time series. CNNs use convolution layers to 
automatically extract local and abstract features from data, and 
are widely used in computer vision and signal processing tasks. 

Quantization: A technique used to reduce the size and speed 
up the inference of LLMs, which involves reducing the 
numerical precision of the model weights by moving from 
floating-point numbers to lower precision representations, such 
as integers or fixed-point numbers.  

Training data: A set of examples used to train a machine 
learning model, including the inputs (features) and, in the case 
of supervised learning, the labels or expected responses. The 
quality and diversity of this data is crucial for model 
performance and generalization.  

Eliza Effect: A psychological phenomenon whereby users tend 
to attribute human-like cognitive and emotional capabilities to 
AI-based conversational systems, despite these systems 
possessing no real understanding of language or general 
intelligence.  

Embeddings: Dense, continuous representations of discrete 
elements (such as words, phrases or documents) in a high-
dimensional vector space, where similar elements have close 
representations. They are used in LLMs to capture semantic and 
syntactic relationships between language elements.  

AI ethics: The discipline that studies the moral principles, values 
and guidelines that should guide the development, deployment 
and use of artificial intelligence systems, with the aim of 
ensuring that they are beneficial, fair, transparent and aligned 
with human values.  

Human evaluation: The process of qualitative review and 
assessment of the behavior and results of an AI system by 
experts and users, which complements quantitative metrics and 
allows the detection of errors, biases or undesired behaviors 
that might go unnoticed in a purely automatic evaluation.  

Explainability (XAI, eXplainable AI): The property of an AI 
model that refers to its ability to provide human-
understandable explanations of its inner workings, the 
reasoning behind its predictions, and the factors that influence 
its decisions.  

Few-shot learning: The ability of a machine learning model, 
especially LLMs, to learn to perform a new task from a few 
examples (from one to a few tens), leveraging prior knowledge 
acquired during pre-training on large amounts of data.  

Fine-tuning: A technique for adapting a pre-trained language 
model to a specific task, through additional training with a 
smaller data set specialized in that task. It allows taking 
advantage of the general knowledge of the model and 
adjusting it to obtain high performance in specific applications.  

Ethical hacking: The practice of testing and challenging an AI 
system in a controlled and permissioned manner, with the goal 
of identifying vulnerabilities, flaws, biases or undesired 
behaviors, and then correcting them to improve the security 
and robustness of the system.  

Instruction tuning: A fine tuning technique for LLM that 
consists of providing the model with instructions, questions and 
examples of expected responses, with the objective of aligning 
its behavior with the expectations and preferences of users in a 
specific domain.  
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Artificial Intelligence (AI): A field of computer science and 
engineering dedicated to the development of systems capable 
of performing tasks that normally require human intelligence, 
such as learning, reasoning, perception, natural language 
interaction and problem solving.  

Generative Artificial Intelligence (GenAI): A subfield of AI that 
focuses on the creation of models and algorithms capable of 
generating new and original content, such as text, images, 
video, audio, source code or 3D designs, by learning patterns 
and features from a training data set.  

Large Language Models (LLM): Deep learning models 
specialized in natural language processing and generation, 
trained on huge amounts of text and with a large number of 
parameters (from millions to billions), capable of performing 
various linguistic tasks with a high level of comprehension and 
coherence. 

LLMOps (Large Language Model Operations): A set of 
practices, tools and processes to efficiently and scalably manage 
the complete LLM lifecycle in production environments, 
covering training, deployment, monitoring, updating and 
governance of these models.  

Machine learning: Branch of artificial intelligence that focuses 
on the development of algorithms and models that allow 
systems to learn and improve automatically through 
experience, without being explicitly programmed to do so.  

Machine unlearning: A set of techniques to selectively remove 
or "unlearn" certain information or unwanted biases from an 
already trained machine learning model, without the need to 
retrain it from scratch, allowing compliance with privacy 
requirements or correct unwanted behaviors.  

Quantitative metrics: Standardized numerical measures used 
to objectively and consistently evaluate the performance of an 
AI model on specific tasks, such as precision, completeness, 
accuracy or efficiency.  

Generative model: A type of machine learning model designed 
to learn the underlying probability distribution of a data set and 
generate new samples that are similar to the training data and 
can create new and realistic content.  

Pre-training: The initial stage of LLM training in which a large 
corpus of unstructured and unlabeled text is used for the model 
to learn general representations and language patterns, 
acquiring a broad and robust knowledge that can then be 
adapted to specific tasks by fine-tuning.  

Differential privacy: A cryptographic technique used to share 
aggregated information about a dataset, while protecting the 
privacy of the individuals present in that data, by introducing 
random noise that makes it difficult to identify individual entries 
from the analysis results.  
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Prompt engineering: Discipline that focuses on designing, 
optimizing and adapting prompts (text inputs) to obtain the 
best possible results from LLMs in specific tasks, taking 
advantage of techniques such as the inclusion of examples, the 
specification of formats or step-by-step guidance.  

A/B testing: An experimental method used to compare the 
performance of two different versions of an AI system (A and B) 
or between an AI system and an alternative approach (such as a 
human or a base model), in order to determine which performs 
better according to predefined metrics.  

AI regulation: The set of laws, regulations, standards and 
guidelines established by governments and organizations to 
ensure that the development, deployment and use of artificial 
intelligence systems is conducted responsibly, safely, ethically 
and in line with society's fundamental values and rights.  

Retrieval-Augmented Generation (RAG): a technique used in 
LLMs that consists of retrieving relevant information from an 
external knowledge base before generating a response, thus 
combining the ability to access structured information with the 
generation of coherent and fluent natural language.  

RNN (Recurrent Neural Network): A type of neural network 
designed to process sequences of data, such as text or time 
series. Unlike feedforward neural networks, RNNs have recurrent 
connections that allow them to maintain internal state and 
capture temporal dependencies. Variants such as LSTM and 
GRU have been widely used in natural language processing 
tasks before the rise of transformers. 

AI safety: The discipline that focuses on identifying, preventing 
and mitigating potential risks associated with the development 
and use of advanced AI systems, both in the short and long 
term, including security risks, biases, errors, misuse or 
unintended consequences.  

Bias: Systematic tendency of a machine learning model to 
produce results that unfairly favor or disadvantage certain 
groups or individuals, due to sensitive characteristics such as 
gender, ethnicity, age or sexual orientation, and usually 
resulting from biases present in the training data or suboptimal 
decisions during model development.  

Token: A discrete unit into which a text is divided for 
processing by a language model. Tokens can be words, 
subwords or characters, and are the basic input for LLM training 
and inference. 

Tokenization: The process of converting a text into a sequence 
of tokens. The choice of tokenization strategy has a significant 
impact on the performance and efficiency of the model. 

Transformers: A deep neural network architecture that uses 
attention mechanisms to process and generate sequences in 
parallel, rather than sequentially like RNNs. It allows capturing 
long-term and contextual dependencies, being the dominant 
architecture for LLMs and setting the state of the art in various 
natural language processing tasks.  

Validation: A comprehensive and multidisciplinary process to 
evaluate an AI system, especially LLM, in terms of performance, 
robustness, safety, security, fairness, explainability and 
alignment with ethical and social requirements and values, 
combining quantitative metrics and qualitative assessment by 
experts and users. 
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