
M
A

N
A

G
EM

EN
T 

SO
LU

TI
O

N
S

Th
e 

ri
se

 o
f L

ar
ge

 L
an

gu
ag

e 
M

od
el

s 
: f

ro
m

 fu
nd

am
en

ta
ls

 to
 a

pp
lic

at
io

n

22

LLM: development and deployment

“Generative AI is the key to solving some of the world's biggest problems, such as 
climate change, poverty and disease. It has the potential to make the world a better 

place for everyone“. 
Mark Zuckerberg37

Auge LLM-Eng- Vdef_Maquetación 1  30/05/2024  23:48  Página 22



23

This section discusses the key aspects of the LLM development 
and deployment process. It examines key components such as 
data and model architecture, as well as the pre-training, fine-
tuning, and implementation phases. It also discusses the key 
challenges and considerations that must be considered to 
ensure ethical, robust development aligned with an 
organization's goals. 

Key aspects of LLM development 

LLM development is a complex process involving many 
components and critical decisions. The following is a 
description of the main components that need to be known 
about LLM development, and some key aspects about them. 

Data 

Data are the foundation upon which LLMs are built, and their 
quality, diversity, and representativeness directly impact the 
performance and bias of the resulting model. Addressing 
challenges related to intellectual property, data quality, and 
preprocessing is essential to developing robust, unbiased, and 
accurate LLMs. As regulations and best practices in this area 
evolve, we will llikely see an increased emphasis on responsible 
and transparent use of data in LLM training. 

Some key aspects about LLM training data are: 

4 Training corpus38: LLMs are trained on large corpora of data, 
often extracted from the internet, containing billions of 
words and spanning a wide range of domains and genres, 
such as books, news articles, web pages, social networks 
and more. These massive corpora enable LLMs to learn 
patterns and representations of language on a large scale, 
giving them an unprecedented ability to understand and 
generate coherent, contextualized text. For example, 
common corpora for training include BookCorpus39, 
Gutenberg40, Wikipedia41 or CodeParrot42.  

4 Intellectual property and copyright43: Extracting and using 
Internet data for LLM training raises challenges related to 
intellectual property and copyright. Much of this data is 

protected by copyright, and its use without permission or 
adequate compensation can be problematic. The AI Act in 
Europe addresses this issue by imposing new requirements 
on LLM developers, such as the obligation to disclose the 
data sources used and to obtain the necessary licenses. 

4 Data quality and representativeness44: Like any model, an 
LLM is only as good as the data used to train it. If the data is 
of poor quality, biased or unrepresentative, the model may 
inherit these problems and produce inaccurate, unfair or 
inappropriate results. Therefore, it is critical to ensure that 
training corpora are diverse, balanced, and adequately 
represent different demographics45, opinions, and 
perspectives.   

4 High quality data initiatives46: Some recent initiatives focus 
on building LLMs with fewer parameters, but higher quality 
data, such as smaller, but carefully selected and filtered47 

training corpora  that include high quality content like 
books, scientific articles, and respected publications. These 
filters can be limited, for example, to a single language, or to 
an industry or subject area, drastically reducing the size of 
the corpus. This strategy can result in LLMs with better 
performance and less bias than models trained on massive 
unfiltered data. 

 
37Mark Zuckerberg (n. 1984), co-founder and CEO of Facebook and Meta, one of 

the world's largest social networking, technology and artificial intelligence 
companies. 

38Liu (2024). 
39Soskek (2019). 
40Project Gutenberg (2024). 
41Wikipedia Dumps (2024). 
42Hugging Face Datasets (2024). 
43Li (2024), Chu (2023).  
44Alabdulmohsin (2024).  
45Yogarajan (2023). 
46Sachdeva (2024).  
47Tirumala (2023). 
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4 Data preprocessing and labeling48: Before training or fine-
tuning an LLM, the data must be preprocessed and, in some 
cases such as supervised fine-tuning or using a specific 
dataset, labeled. Preprocessing involves cleaning and 
formatting the data49, removing noise and errors, and 
applying techniques such as tokenization and normalization 
(e.g., LayerNorm50 for Transformers). 

Tokenization and encoding 

Tokenization refers to the process of breaking down text into 
smaller units called "tokens", which are the units processed by 
the LLM during training and response inference. These tokens 
can be words, parts of words (e.g. lemmas), or characters. For 
example, one of the simplest ways to generate tokens is to 
partition the corpus according to the spaces between words. 
Encoding is the process of representing these text units in 
numerical form so that the model can process them.   

Some key points about tokenization in LLM: 

4 It is performed on the available text corpus to optimally 
divide the original text into smaller units. The end result of 
tokenization is an encoding. 

4 Encodings have a significant impact on the performance of 
the LLM51, as they define the minimum processing unit it 
will receive and determine the vocabulary the LLM has 
access to. 

4 There are several encoding algorithms on the market52 that 
differ in the way they divide the text based on words, 
phrases or sentences, use of spaces, capitalization or 
formatting, appearance of characters in different languages, 
or errors present in the text.   

4 The main encodings53 used are BytePairEncoding, 
SentencePieceEncoding and WordPieceEncoding. 

The tokenization result is used as a starting point in the 
embedding model.  

Embedding 

Embeddings are numerical representations of words, phrases, 
sentences, or even paragraphs that capture their semantic 
meaning and the relationships between them. They are based 
on the LLM input corpus, which is divided into tokens. They are 
a fundamental component of LLMs and play a crucial role both 
in the pre-training, fine-tuning, and subsequent use of these 
models. 

Figure 5. Stages of LLM input data processing.

 
48Chen (2023). 
49Wenzek (2019), Penedo (2023). 
50Zhao (2023). 
51Rejeleene (2024). 
52Minaee (2024). 
53Kudo (2018). 

Auge LLM-Eng- Vdef_Maquetación 1  30/05/2024  23:48  Página 24



Types of embeddings

25

Embeddings in LLMs: 

4 They are designed to capture semantic relationships 
between words, so that words with similar meanings have 
similar vectors. This allows the model to understand the 
similarity and analogies between words and concepts. 

4 They are not universal values, but will vary from one model 
to another, depending on the vector space in which they 
have been defined. 

4 They are contextual, meaning that the representation of a 
word can vary depending on the context in which it 
appears. This allows nuances of meaning to be captured 
and polysemous words to be disambiguated. The 
embeddings are not predefined but are learned from 
training data based on the LLM embedding model. During 
pre-training, the model adjusts the embeddings to 
maximize their ability to predict words in context (e.g. 
through embedding frameworks such as 
SentenceTransformers). However, the embeddings alone 
are already a model that needs to be tuned during the 
process. 

Pre-training 

Pretraining is a fundamental stage in LLM development, during 
which models acquire general and deep language knowledge 
from large amounts of unlabeled data. Although this process is 
computationally intensive and costly, it enables model 
adaptation to a wide range of tasks.  

The main goal of pre-training is for the model to acquire a broad 
and deep knowledge of the language, including its structure, 
semantics, syntax, and context. During this process, the LLM 
learns to predict words or text fragments (i.e., tokens) based on 
the surrounding context, allowing it to capture complex 
linguistic relationships and patterns. This general knowledge 
becomes the basis for fine-tuning the model for specific tasks. 

There are several popular techniques for LLM pre-training, such 
as: 

4 Autoregressive language modeling or unidirectional 
modeling (e.g., autoregressive modeling54), which consists 
of training the model to predict the next word or text 
fragment given the previous context. This task allows the 
model to learn the conditional probabilities of the language 
and generate coherent text. Examples include the GPT and 
Claude models. 

Embeddings are used in LLMs in order to establish a metric 
that defines the similarity between word meanings and to 
incorporate information about the position of words in a 
sentence. This is crucial, since word order affects meaning. 
There are three main types of positional embeddings: 

4 Absolute positional embedding1: Assigns to each word - or 
to each minimal text unit or token - a vector representing 
its exact position in the sentence (e.g., first, second, third 
position, etc.). 

4 Relative positional embedding2: Instead of being based on 
absolute positions, it represents the position of a word 
relative to the others (e.g. two words before, one word 
after, etc.).  

4 Rotary positional embedding3: Combines absolute and 
relative positional information, using trigonometric 
functions to create more complex vector representations. 

In a transformer, a simple positional embedding for a word at a 
given position can be represented mathematically using sine 
and cosine functions. Specifically, a positional embedding E  
for a token i with position P can be represented mathematically 
in its simplest form as:

 
1Vaswani (2017). 
2Shaw (2018). 
3Su (2021). 

 
54Devlin (2018), Liu (2022). 

where P is the position of the token in the input sequence, and 
d is the dimension of the hidden layers of the transformer. 

The choice of positional embedding type can affect LLM 
performance by determining the amount and type of positional 
information available to the model during training.  
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4 The non-autoregressive model55, used in models such as 
Gemini, in which the response is not obtained sequentially 
word by word, but is transformed and refined as a whole. 

4 Masked language modeling56, popularized by models such 
as BERT, which consists of randomly masking some words in 
the input text and training the model to predict these 
masked words based on the surrounding context. This 
technique allows bidirectional learning and a better 
understanding of the context. Some LLM architectures (e.g., 
bidirectional transformers) use this technique. 

4 Sequence-to-sequence modeling57 (e.g., seq2seq58), where 
the model is trained to generate text sequences based on 
other input sequences. This is used in models such as T5, 
BART or ProphetNET. 

4 Contrastive pre-training59, used in models such as CLIP and  
ALIGN60, involves training the model to identify text-image 
pairs that are semantically related , allowing it to learn 
multimodal representations and transfer knowledge 
between different modalities61. 

LLM pre-training is a computationally intensive process that 
requires enormous amounts of data, time and hardware 
resources. The largest models can have on the order of 1 trillion 
(1012) parameters and require thousands of high-end GPUs for 
weeks or months of training. This makes pre-training extremely 
expensive and affordable for only a few companies and 
organizations in the world with the necessary resources. 

Quantification 

During LLM training, neuron weights are adjusted to make 
more accurate predictions. These weights are typically stored as 
high-precision numbers, which can result in large and 
computationally expensive models. 

Post-training quantization is a technique62 that allows the 
accuracy of model parameters to be reduced without 
significantly affecting model performance. For example, neural 
networks that store their parameters in 32-bit floating-point 
numbers can be switched to using only 16-bit or 8-bit numbers, 
depending on the type of quantization. This results in smaller 
and faster models because they require less memory and, with 
the right hardware, can perform operations more efficiently. 

Recently, there has been a trend to develop small language 
models (SLMs), or even "tiny LLMs"63, models that maintain high 
performance despite their much smaller size. These compact 
models are achieved by combining techniques, including post-
training quantization. 

By skillfully applying these techniques, SLMs and tiny LLMs can 
in some cases achieve performance comparable to that of 
much larger models64, making them attractive for applications 
where computational or memory resources are limited. 

 
 
55Xu (2021). 
56Devlin (2019), Sinha (2021).  
57Lee (2022). 
58Sutskever (2014). 
59Zeng (2023).  
60Jia (2021). 
61Cui (2022). 
62Li (2024). 
63Tian (2024).  
64Fu (2024). 
 

Figure 6. LLM fine-tuning.
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LLMs, like other deep learning models, learn by adjusting their 
parameters to minimize a loss function. This function measures 
the difference between the model's predictions and the 
expected outcomes, and guides the model toward better 
performance. 

The choice of loss function depends on the type of task for 
which the LLM is being trained. For example, for a model that 
predicts the next word in a sentence (autoregressive language 
modeling), a common function is cross-entropy. This function 
compares the probability distribution of the words predicted 
by the model with the actual distribution observed in the 
training data. 

Mathematically, the cross-entropy loss function for an 
autoregressive model can be expressed as the sum of the 
negative logarithms of the probabilities assigned to the correct 
words at each position in the sequence. 

Specifically, given a loss function such as cross-entropy and a 
training typology such as autoregressive language modeling, 
the loss function to be minimized can be defined as: 

 

 

 

 

where φ represents the model parameters, i refers to the 
number of tokens in a given sequence of N tokens, P is the 
probability of predicting the token i as a function of the 
sequence x of previous tokens. 

When fine-tuning the model embeddings, specialized loss 
functions can be used to fine-tune the vector representations of 
the words. Some popular options are: 

4 Cosine similarity loss: adjusts embeddings so that similar 
words have more similar vectors. 

4 Mean square error loss: minimizes the quadratic difference 
between predicted and expected embeddings. 

4 Multiple Negative Ranking Loss: associate embeddings of 
related words so that they are closer together than those of 
unrelated words. 

4 Triplet, Matryoshka or contrastive loss: more advanced 
variants that consider relationships between trios or 
groups of embeddings. 

Careful selection of the loss function is crucial for training 
effective and efficient LLMs that can capture the nuances of 
natural language.

27

Training LLM: loss functions Fine-tuning, instruction-tuning and RAG 

Fine-tuning is the process of adapting a pre-trained LLM to a 
specific task using a smaller data set. This technique makes it 
possible to take advantage of the general knowledge acquired 
during pre-training and specialize it to achieve high 
performance on the target task.  

The main goal of fine-tuning (Figure 6) is to adapt a pre-trained 
LLM to a specific task, such as sentiment classification, question 
answering, machine translation, or summary generation. During 
this process, the model learns to use its general knowledge of 
the language and apply it effectively to the specific domain and 
requirements of the task at hand. Commercially available LLMs, 
whether proprietary or open source, are typically pre-trained 
(and therefore general-purpose), but have not been fine-tuned 
to adapt to a specific purpose. 

Fine-tuning has several important advantages: 

4 Leverages prior knowledge: By starting from a pre-trained 
model, fine-tuning allows the vast general knowledge of the 
language acquired during pre-training to be leveraged, 
accelerating learning and improving performance on the 
specific task. 

4 Requires less data and resources: Compared to training 
from scratch, fine-tuning requires much less labeled data 
and computational resources, making it more accessible 
and cost-effective for a wide range of organizations and 
applications. 

4 Enables specialization: Fine-tuning allows LLMs to be 
tailored to specific domains and tasks, resulting in highly 
specialized and effective models for specific applications. 

4 Facilitates learning transfer: Fine-tuned models can 
receive additional fine-tuning for related tasks, enabling 
learning transfer and the creation of even more specialized 
models with relatively little additional data. 

Despite its benefits, fine-tuning also presents some challenges: 

4 Overspecialization65: If the model is fine-tuned on a data 
set that is too specific, it may lose some of its generalization 
ability and perform poorly on unknown or slightly different 
data. 

 

65Wang (2024). 
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4 Catastrophic forgetting66: During fine-tuning it is possible 
for a model to forget previously learned critical knowledge. 

4 Instability67: The fine-tuning process can be sensitive to 
factors such as weight initialization, hyperparameters and 
data selection, which can lead to inconsistent results or 
variations in performance. 

4 Bias inheritance68: Models that have been fine-tuned may 
inherit and amplify biases present in both pre-training and 
fine-tuning data, which requires careful consideration and 
mitigation. 

There are several types of fine-tuning to choose from, 
depending on how much the initial model needs to be modified 
to fit a task in a more specific domain. The main methods are: 

4 Supervised fine-tuning69: This method require labeled 
input and response data sets from the LLM that are used to 
improve its response to specific tasks. A popular method of 
supervised fine-tuning is called “instruction-tuning”70, which 
consists of tuning the model's responses to what is 
expected by its users through interactions with the model.   

4 Reinforcement learning: These methods are based on 
reinforcement learning and focus on improving the quality 
of the LLM response, in this case based on user feedback or 
reward models (e.g., direct optimization by preference71). 

4 Unsupervised fine-tuning72: This is a method that does not 
require labeled data sets, but relies on retraining the model 
with the same methods used during pre-training (e.g., 
predicting the next token).  

4 Parameter efficient73: Fine-tuning (PEFT): Other fine-tuning 
methods aim to increase efficiency and reduce the effort 
required to retrain the model. For example, techniques 
based on LoRA74 (low-rank adaptation), such as QLoRA or 
LongLoRA75, allow fine-tuning of the model without 
changing its weights and store the knowledge learned 
during the fine-tuning process in additional model 
parameters. 

In many LLM use cases, it is not necessary to use fine-tuning to 
improve the model´s capabilities in a specific domain. 
Augmented Retrieval Generation76(RAG) is a technique that 
improves LLM performance by using knowledge sources 
external to the model.  

RAG techniques (Figure 7) work by searching a database for 
documents similar to or related to the input prompt. This search 
and its results are added to the LLM response generation to 
enrich it by providing a specific context.   

Figure 7. Operation of the RAG.

 

66Luo (2024).  
67Zhang (2024). 
68Zhang (2024).  
69Ovadia (2024). 
70Zhang (2023). 
71Rafailov (2023). 
72Zhou (2023). 
73Xu (2023). 
74Dettmers (2023). 
75Chen (2023). 
76Lewis (2020) and Neelakantan (2022). 
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77Wan (2024).  
78Abhyankar (2024).  
79Goyal (2024).  
80Lester (2021). 
81Banerjee (2023).  

Deployment and use 

Once trained and validated, the LLM needs to be deployed in a 
production environment for use in real applications. This 
involves integrating the model into existing systems and 
workflows, and creating interfaces and APIs to interact with it. 

There are several key aspects to this process, including 
integration and monitoring. 

Integration with systems and workflows 

4 Infrastructure77: LLMs are typically large and 
computationally intensive models that require a robust 
infrastructure for their implementation. This may include 
the use of specialized hardware, such as GPUs or TPUs, and 
cloud computing platforms optimized to perform the 
inference process efficiently. 

4 Interfaces and APIs78: To facilitate the use of the LLM in 
applications and services, it is necessary to develop 
interfaces and APIs that allow other systems to interact with 
the model in an efficient and secure manner. This may 
include endpoints, client libraries in various programming 
languages and graphical user interfaces for non-technical 
users. 

4 Integration with other components: In many cases, LLMs 
are part of a larger system that includes other components 
such as databases, natural language processing services 
and end-user applications. Seamless and efficient 
integration of the LLM with these components is critical to 
ensure optimal performance and user experience. 

Monitoring and maintenance 

4 Performance monitoring79: Once implemented, it is 
essential to closely monitor LLM performance under real-
world conditions. This involves tracking metrics such as 
latency, throughput, accuracy and resource usage, as well as 
setting thresholds for resource consumption and cost, and 
alerts to detect and address any degradation or anomalies. 

4 Updating and retraining80: As new data becomes available 
or areas for improvement are identified, it may be necessary 
to update or retrain the LLM. This requires a well-defined 
process to collect and prepare new data, perform fine-
tuning, and deploy the updated version of the model 
without service interruptions. 

4 Version management81: With continuous upgrades and 
enhancements, it is important to maintain strict version 
control of the LLM and its associated components. This 
facilitates reproducibility, debugging and the ability to 
revert to previous versions if necessary. 

As can be seen, LLM development and deployment is a complex 
and multifaceted process that requires careful consideration of 
multiple aspects, from data selection and preparation to 
implementation and responsible use of the model. A thorough 
understanding of the key components, such as pre-training, 
fine-tuning and embedding, as well as an awareness of the 
associated challenges and risks, is essential to harnessing the 
full potential of LLMs in an ethical, sustainable and cost-effective 
manner that is aligned with each organization's objectives. 
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LLM architecture 

LLM architecture refers to the structure and organization of the 
neural networks that make up these models. The choice of 
architecture and its components significantly impacts the LLM's 
performance, efficiency and capabilities. This section examines 
the major architectures used in LLMs and their characteristics, 
advantages, and limitations. 

Transformers: the state of the art in LLMs 

Introduced in 2017, transformers have become the dominant 
architecture for LLMs82. Unlike previous architectures based on 
recurrent neural networks (RNNs) or convolutional neural 
networks (CNNs), transformers rely solely on attentional 
mechanisms to process and generate text sequences (Figure 8). 

The transformer architecture consists of two main components: 
the encoder and the decoder, and there are transformers with 
encoder only, decoder only, or both components. The encoder 
processes the input sequence and generates a contextual 
representation for each token, while the decoder generates the 
output sequence from the encoder representation and previous 
predictions. 

The key to transformers is the attention mechanism, which 
allows the model to pay attention to different parts of the input 
sequence (encoder attention) and to previous predictions 
(decoder attention) to generate the next word or token. This 
allows long-term dependencies to be captured and coherent 
sequences to be generated. 

Transformers also introduce the concept of multi-head 
attention, where multiple attention mechanisms operate in 
parallel, allowing the model to capture different types of 
relationships and patterns in the data. 

The Transformer architecture has demonstrated exceptional 
performance on a wide range of natural language processing 
tasks, and has been adopted by most state-of-the-art LLMs. 

Transformers variants and extensions 

Since the introduction of transformers, numerous variants and 
extensions have been proposed to improve their efficiency, 
scalability and modeling capabilities. 

4 One popular variant is the bidirectional transformer, which 
allows the model to consider each token's left and right 
context. This is achieved by using a masked language 
modeling (MLM) pre-training goal, where some tokens are 
randomly masked and the model must predict them based 
on the surrounding context. 

4 Another variant is the Generative Transformer, such as GPT, 
which uses a one-way language modeling approach. This 
allows efficient and consistent text generation because the 
model can only consider the left context of each token. 

4 Extensions have also been proposed to make transformers 
more efficient and scalable, such as the sparse transformer, 
which uses sparse attention to reduce computational 
complexity, and the compressed transformer, which uses 
compression techniques to reduce model size. 

Figure 8. Operation of a transformer.  

Input query to the model 

Input is broken down into units (tokens). 

The embedding model processes and assigns numerical 
representations to each tokens. 

Positional information is added for the model to understand 
relations between words and context. 

Encoder uses self-attention to figure out which words are 
important and how they relate to each other, processing in 
parallel the data in N layers. 

Decoder considers previous context and translated parts 
using attention. 

Decoder takes translated information from the encoder and 
generates a new answer. 

Answer is reversed and presented in a coherent manner.  

1
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82Vaswani (2017). 
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Prompt Engineering in LLMs: Principles and Best Practices

Prompt engineering refers to the process of designing and 
optimizing prompts to get the best possible results from LLMs. This 
emerging discipline includes a set of principles and best practices 
that allow you to take full advantage of the capabilities of these 
models. Among them are: 

4 Be clear and specific: The instructions given to the model 
should explicitly state the format, length, and level of detail 
expected in the response. For example, instead of simply asking 
"Analyze the financial situation of company X," it is better to 
give an instruction such as "Write a 1000-word report on the 
financial situation of company X, covering its profitability, 
liquidity, solvency, and future prospects". 

4 Break down complex tasks: It is useful to break down problems 
into more manageable subtasks for LLMs. For example, instead 
of asking "Develop a strategic plan for company Y", subtasks 
such as "Conduct a SWOT analysis of company Y", "Define the 
key strategic objectives for company Y", "Propose initiatives to 
achieve each objective", etc. can be requested. 

4 Provide illustrative examples (few-shot learning): A few well-
chosen examples can go a long way in communicating the 
desired task. For example, if you want to create value 
propositions for products, you could give two examples: "Our 
CRM software enables sales teams to close deals 50% faster" 
and "Our wellness app helps employees reduce stress and 
increase their productivity by 25%". 

4 Ask for step-by-step reasoning: Asking the LLM to verbalize its 
thought process often leads to more robust results. This is 
especially useful for business analysis or problem-solving 
tasks. For example, "Describe step-by-step how you would 
calculate the ROI of this investment project." 

4 Ask for references used: Instruct the LLM to provide references 
to the documents used in its argument, including citations to 
the original text to which it has access. 

4 Ask the LLM to adopt a persona: Before the main task, you can 
first instruct the model to adopt a certain role, tone, or style. 
For example: "Act as an expert financial analyst and provide an 
objective assessment of company X". This will help guide its 
behavior. 

31

4 Leverage external knowledge: By providing additional 
information, the LLM's knowledge base can be supplemented. 
For example, to answer questions about a specific industry, one 
could first retrieve relevant industry reports and feed them into 
the model. 

4 Iterate and refine systematically: By continuously evaluating 
model performance, areas for improvement can be identified 
and prompts adjusted accordingly. Quantitative metrics and 
qualitative judgments from domain experts can guide this 
iterative process. 

By applying these prompt engineering principles, LLMs are 
statistically proven to deliver a more accurate and reliable result. 

All things considered, a bad prompt for an LLM to write a column 
on prompt engineering would be, "Write an article on prompt 
engineering." 

And a good prompt for that column would be: 

"Act as an artificial intelligence expert and write a 600-word 
outreach column on the key principles of prompt engineering to 
get the best results from LLMs. Structure the column with a brief 
and engaging introduction, 4-5 paragraphs covering the main 
points (be specific, break down tasks, give examples...), and a 
conclusion with the benefits of applying these techniques. Use an 
informative but rigorous tone, suitable for a business audience. 
Include concrete examples to illustrate the ideas". 

Sources: OpenAI prompt engineering guide1, Anthropic Claude 
Opus support and own elaboration. 

 
1OpenAI (2024). 
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Comparison to previous architectures 

Before transformers, the dominant architectures for sequence 
modeling were recurrent neural networks (RNN), such as long 
short-term memory (LSTM) and gated recurrent unit (GRU), and 
convolutional neural networks (CNN). 

4 RNNs can capture long-term dependencies in sequences, 
but suffer from problems such as gradient vanishing and 
difficulty in parallelizing training. In addition, RNNs have 
difficulty capturing very long dependencies due to their 
sequential nature and the use of constant range recurrence. 

4 CNNs can capture local patterns in sequences and are 
computationally efficient, but have difficulty modeling long-
term dependencies and require a fixed context size. 

In contrast, transformers overcome these limitations by using 
attention mechanisms that can efficiently capture long-term 
dependencies in parallel. In addition, transformers are more 
flexible in handling variable-length sequences and can be pre-
trained on large amounts of unlabeled data. 

The transformer architecture has revolutionized the field of LLM 
and has enabled significant advances in a wide range of natural 
language processing tasks. However, challenges such as the 
scalability, interpretability, and efficiency of these models 
remain. As research continues, new architectures and 
techniques are likely to emerge that will overcome these 
limitations and take LLMs to new heights of performance and 
capability. 

LLMOps 

Machine Learning Operations (MLOps) is a methodology and 
set of practices designed to manage the complete lifecycle of 
machine learning models, from development and training to 
deployment and maintenance in production. 

In recent years, an adaptation of the MLOps methodology 
specifically for LLMs has emerged, known as LLMOps (Large 
Language Model Operations). This discipline focuses on 
efficiently managing the entire LLM lifecycle, from development 
and training to deployment and maintenance in production 
environments. 

LLMOps integrates traditional software development processes 
with tools and techniques designed to address the unique 
challenges of large language models. These challenges include: 

4 Managing large amounts of data: LLMs require massive 
amounts of training data, which implies the need for 
scalable and efficient storage and processing 
infrastructures. 

4 Scaling of computational resources: LLM training and 
inference require massive computational resources, which 
calls for the use of parallelization and distribution 
techniques, as well as optimizing the use of specialized 
hardware such as GPUs and TPUs. 

4 Monitoring and maintenance: Once deployed in 
production, LLMs must be closely monitored to detect and 
correct performance issues, biases, risks such as 
hallucinations, and model degradation over time. 
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4 Versioning and reproducibility: Given the size and 
complexity of LLMs, it is critical to maintain strict version 
control and maximize the reproducibility of experiments 
and results. 

To address these challenges, LLMOps relies on a number of 
specific tools and frameworks, such as MLFlow83, CometML84 
and Weights & Biases85. These platforms provide capabilities for 
experiment tracking, model management, performance 
monitoring, and cross-team collaboration. 

In addition, LLMOps promotes practices such as process 
automation, continuous testing, comprehensive 
documentation and model governance. This not only improves 
the efficiency and quality of LLM development, but also ensures 
its ethical and responsible use. 

Challenges 

The development and deployment of LLMs presents a number 
of significant challenges that must be addressed to ensure their 
responsible, ethical, and secure use. This section explores some 
of the key challenges that organizations face in deploying and 
using LLM. 

Biases, hallucinations and reliability 

One of the biggest challenges of LLMs is the presence of biases 
and hallucinations in their results and predictions. Biases can 
arise from several sources, such as biased training data, 
limitations of model architectures, or human biases implicit in 
annotation and evaluation tasks. On the other hand, 
hallucinations refer to the generation of information or content 
that appears plausible but is not based on facts or knowledge 
acquired during training. 

Biases in LLMs can manifest themselves in a variety of ways, 
such as perpetuating gender, race, or age stereotypes, 
discriminating in classification tasks, or generating offensive or 
inappropriate content. These biases can have serious 
consequences, especially when LLMs are used in sensitive legal, 
financial or medical applications. In turn, hallucinations can lead 
to the dissemination of incorrect or misleading information, 
which can have a negative impact on user confidence and the 
credibility of LLM-based applications. 

To address the challenge of bias, it is necessary to develop 
robust techniques to detect, measure, and mitigate its presence 
in LLMs. This includes the creation of bias-specific evaluation 
datasets, the use of fairness metrics, and the application of bias 
elimination (debiasing) techniques in both pre-training and 
fine-tuning. In addition, it is critical to establish ongoing 
auditing and monitoring processes to ensure that LLMs remain 
unbiased over time. 

To address hallucinations in LLMs, several methods are being 
developed that focus on improving training data, applying 
robust regularization techniques, and using human feedback to 
tune model responses. In addition, architectural changes to the 
models are being investigated to make them inherently less 
prone to hallucination. Text generation methods and input 
context can also be optimized to reduce hallucinations. Human 
supervision and rigorous evaluation are essential to detect and 
correct inaccurate information. Also, the development of 
specific tools, such as hallucination assessment models and 
obfuscation techniques, can help improve the accuracy of LLMs. 

 
83Zaharia (2018). 
84CommetML: https://www.comet.com/  
85Weights and biases: https://wandb.ai/site  
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Explainability and accountability 

Another major challenge with LLMs is their opacity and lack of 
explainability. Due to their complexity and the nature of their 
architectures, it is difficult to understand how these models 
arrive at their results. 

This lack of transparency raises accountability issues, especially 
when LLMs are used in highly sensitive contexts where 
decisions significantly impact individuals (e.g., the use of LLMs 
in medicine, pharmaceutical research, critical infrastructure, or 
access to the labor market). Without a clear understanding of 
how these models work, it is difficult to determine liability in the 
event of errors or unintended behavior. 

To address this challenge, it is necessary to develop techniques 
and tools that allow for greater interpretability and 
explainability of LLMs. This includes methods for visualizing and 
analyzing internal attention mechanisms, attribution techniques 
for identifying the most relevant parts of the input, and 
approaches for generating natural language explanations of 
model predictions. 

In addition, it is important to establish clear accountability 
frameworks that define the responsibilities of LLM developers, 
implementers and users, as proposed in Europe by the AI Act. 
This may involve the creation of standards and guidelines for 
the ethical development of LLMs, external monitoring and 
auditing mechanisms, and channels for stakeholders to raise 
concerns. 

Confidentiality and information protection 

LLMs are often trained with large amounts of data that may 
contain personal, sensitive or confidential information. In 
addition, when used in real-world applications, these models 
may be exposed to user input, which may include private data. 

This poses significant privacy and security challenges, as LLMs 
may memorize and reproduce sensitive information from their 
training data, or be vulnerable to attacks that attempt to extract 
private data through carefully crafted queries. 

To address this challenge, it is necessary to develop privacy 
preserving techniques in LLM training and deployment (e.g., 
Digger86 to detect protected information, the use of dummy 
data87 during training to detect copyrighted material).  

In addition, it is crucial to establish robust security and access 
control protocols to protect LLMs and their associated data 
from unauthorized access or malicious use. This may involve 
the use using authentication and authorization techniques, 
security monitoring and anomaly detection. 

Rational use of resources 

LLM training and deployment requires massive amounts of 
computational resources, storage and power. With models 
reaching hundreds of billions or even trillions of parameters, 
the financial and environmental cost of developing and 
operating these systems can be very significant88. 

This high resource consumption poses efficiency, scalability 
and sustainability challenges. As the demand for larger and 
more powerful LLMs continues to grow, ways must be found to 
optimize their performance and reduce their resource footprint. 

To address this challenge, several research directions are being 
explored. One is the design of more efficient model 
architectures, such as using sparse attention mechanisms or 
compression techniques that reduce the size and 
computational complexity of LLMs without significantly 
compromising their performance. 

 
86Li (2024). 
87Meeus (2024). 
88iDanae 1T24 (2024).
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Research is also underway to improve continuous pre-training 
techniques89 and continuous fine-tuning90, which seek to 
integrate the ability to use information from diverse domains 
without relying on extensive and costly retraining with specific 
new data. This aims to integrate the ability to use information 
from different domains without relying on extensive and costly 
retraining with specific new data. Progress is also being made in 
using innovative systems and designing green AI algorithms 
that address the computational and environmental costs 
associated with AI (e.g., Qsimov Quantum Computing's 
GreenLightningAI system91 develops incremental retraining and 
provides straightforward interpretability). 

Another direction is the development of more sustainable 
computing infrastructures and platforms, such as using 
specialized low-power hardware, more efficient cooling 
systems and renewable energy sources to power the data 
centers where LLMs are trained and deployed. 

In addition, it is important to promote practices of rational and 
shared use of resources, such as reusing and adapting pre-
trained models instead of training new models from scratch for 
each task, and the sharing of resources and knowledge 
between organizations and research communities. 

Other challenges 

Among the many additional challenges that organizations face 
in developing, implementing, and using LLMs, the following are 
worthy of brief mention because of their importance: 

4 Dependency and lock-in: Organizations that rely on LLMs 
provided by third parties may face dependency and lock-in 
risks, especially if the models are based on proprietary data 
or infrastructure. It is important to consider diversification 
strategies and contingency plans. 

4 Security risks and malicious use92: LLMs can be vulnerable 
to adversarial attacks, such as poisoned data injection or 
reverse engineering. They can also be used maliciously to 
generate misinformation, spam, or misleading content. It is 
essential to implement robust security measures and design 
models with safeguards against misuse. 

4 Intellectual property and licensing issues: The use of LLM 
raises questions about intellectual property and licensing of 
training data, models and generated results. Additionally, 
there is a risk of theft of information or personal data from 
users launching queries to LLM deployed in third-party 
clouds. Regulatory compliance and ethical frameworks are 
necessary to balance the rights of creators, users and the 
public interest, and, for organizations, to avoid legal and 
compliance risks. 

4 Scalability of LLM architecture93: An additional challenge 
is the scalability of transformers as the size of sequences and 
models increases. Attention mechanisms have quadratic 
complexity concerning sequence length, which limits their 
applicability to very long sequences. 

 
 
89Yıldız (2024). 
90Mehta (2023). 
91iDanae 1T24 (2024). 
92Pankajakshan (2024).  
93Rae (2021). 
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