
M
A

N
A

G
EM

EN
T

SO
LU

TI
O

N
S

Th
e

ri
se

 o
f L

ar
ge

 L
an

gu
ag

e
M

od
el

s
: f

ro
m

 fu
nd

am
en

ta
ls

 to
 a

pp
lic

at
io

n

22

LLM: development and deployment

“Generative AI is the key to solving some of the world's biggest problems, such as
climate change, poverty and disease. It has the potential to make the world a better

place for everyone“.
Mark Zuckerberg37

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 22

23

This section discusses the key aspects of the LLM development
and deployment process. It examines key components such as
data and model architecture, as well as the pre-training, fine-
tuning, and implementation phases. It also discusses the key
challenges and considerations that must be considered to
ensure ethical, robust development aligned with an
organization's goals.

Key aspects of LLM development

LLM development is a complex process involving many
components and critical decisions. The following is a
description of the main components that need to be known
about LLM development, and some key aspects about them.

Data

Data are the foundation upon which LLMs are built, and their
quality, diversity, and representativeness directly impact the
performance and bias of the resulting model. Addressing
challenges related to intellectual property, data quality, and
preprocessing is essential to developing robust, unbiased, and
accurate LLMs. As regulations and best practices in this area
evolve, we will llikely see an increased emphasis on responsible
and transparent use of data in LLM training.

Some key aspects about LLM training data are:

4 Training corpus38: LLMs are trained on large corpora of data,
often extracted from the internet, containing billions of
words and spanning a wide range of domains and genres,
such as books, news articles, web pages, social networks
and more. These massive corpora enable LLMs to learn
patterns and representations of language on a large scale,
giving them an unprecedented ability to understand and
generate coherent, contextualized text. For example,
common corpora for training include BookCorpus39,
Gutenberg40, Wikipedia41 or CodeParrot42.

4 Intellectual property and copyright43: Extracting and using
Internet data for LLM training raises challenges related to
intellectual property and copyright. Much of this data is

protected by copyright, and its use without permission or
adequate compensation can be problematic. The AI Act in
Europe addresses this issue by imposing new requirements
on LLM developers, such as the obligation to disclose the
data sources used and to obtain the necessary licenses.

4 Data quality and representativeness44: Like any model, an
LLM is only as good as the data used to train it. If the data is
of poor quality, biased or unrepresentative, the model may
inherit these problems and produce inaccurate, unfair or
inappropriate results. Therefore, it is critical to ensure that
training corpora are diverse, balanced, and adequately
represent different demographics45, opinions, and
perspectives.

4 High quality data initiatives46: Some recent initiatives focus
on building LLMs with fewer parameters, but higher quality
data, such as smaller, but carefully selected and filtered47

training corpora that include high quality content like
books, scientific articles, and respected publications. These
filters can be limited, for example, to a single language, or to
an industry or subject area, drastically reducing the size of
the corpus. This strategy can result in LLMs with better
performance and less bias than models trained on massive
unfiltered data.

37Mark Zuckerberg (n. 1984), co-founder and CEO of Facebook and Meta, one of

the world's largest social networking, technology and artificial intelligence
companies.

38Liu (2024).
39Soskek (2019).
40Project Gutenberg (2024).
41Wikipedia Dumps (2024).
42Hugging Face Datasets (2024).
43Li (2024), Chu (2023).
44Alabdulmohsin (2024).
45Yogarajan (2023).
46Sachdeva (2024).
47Tirumala (2023).

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 23

M
A

N
A

G
EM

EN
T

SO
LU

TI
O

N
S

Th
e

ri
se

 o
f L

ar
ge

 L
an

gu
ag

e
M

od
el

s
: f

ro
m

 fu
nd

am
en

ta
ls

 to
 a

pp
lic

at
io

n

24

4 Data preprocessing and labeling48: Before training or fine-
tuning an LLM, the data must be preprocessed and, in some
cases such as supervised fine-tuning or using a specific
dataset, labeled. Preprocessing involves cleaning and
formatting the data49, removing noise and errors, and
applying techniques such as tokenization and normalization
(e.g., LayerNorm50 for Transformers).

Tokenization and encoding

Tokenization refers to the process of breaking down text into
smaller units called "tokens", which are the units processed by
the LLM during training and response inference. These tokens
can be words, parts of words (e.g. lemmas), or characters. For
example, one of the simplest ways to generate tokens is to
partition the corpus according to the spaces between words.
Encoding is the process of representing these text units in
numerical form so that the model can process them.

Some key points about tokenization in LLM:

4 It is performed on the available text corpus to optimally
divide the original text into smaller units. The end result of
tokenization is an encoding.

4 Encodings have a significant impact on the performance of
the LLM51, as they define the minimum processing unit it
will receive and determine the vocabulary the LLM has
access to.

4 There are several encoding algorithms on the market52 that
differ in the way they divide the text based on words,
phrases or sentences, use of spaces, capitalization or
formatting, appearance of characters in different languages,
or errors present in the text.

4 The main encodings53 used are BytePairEncoding,
SentencePieceEncoding and WordPieceEncoding.

The tokenization result is used as a starting point in the
embedding model.

Embedding

Embeddings are numerical representations of words, phrases,
sentences, or even paragraphs that capture their semantic
meaning and the relationships between them. They are based
on the LLM input corpus, which is divided into tokens. They are
a fundamental component of LLMs and play a crucial role both
in the pre-training, fine-tuning, and subsequent use of these
models.

Figure 5. Stages of LLM input data processing.

48Chen (2023).
49Wenzek (2019), Penedo (2023).
50Zhao (2023).
51Rejeleene (2024).
52Minaee (2024).
53Kudo (2018).

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 24

Types of embeddings

25

Embeddings in LLMs:

4 They are designed to capture semantic relationships
between words, so that words with similar meanings have
similar vectors. This allows the model to understand the
similarity and analogies between words and concepts.

4 They are not universal values, but will vary from one model
to another, depending on the vector space in which they
have been defined.

4 They are contextual, meaning that the representation of a
word can vary depending on the context in which it
appears. This allows nuances of meaning to be captured
and polysemous words to be disambiguated. The
embeddings are not predefined but are learned from
training data based on the LLM embedding model. During
pre-training, the model adjusts the embeddings to
maximize their ability to predict words in context (e.g.
through embedding frameworks such as
SentenceTransformers). However, the embeddings alone
are already a model that needs to be tuned during the
process.

Pre-training

Pretraining is a fundamental stage in LLM development, during
which models acquire general and deep language knowledge
from large amounts of unlabeled data. Although this process is
computationally intensive and costly, it enables model
adaptation to a wide range of tasks.

The main goal of pre-training is for the model to acquire a broad
and deep knowledge of the language, including its structure,
semantics, syntax, and context. During this process, the LLM
learns to predict words or text fragments (i.e., tokens) based on
the surrounding context, allowing it to capture complex
linguistic relationships and patterns. This general knowledge
becomes the basis for fine-tuning the model for specific tasks.

There are several popular techniques for LLM pre-training, such
as:

4 Autoregressive language modeling or unidirectional
modeling (e.g., autoregressive modeling54), which consists
of training the model to predict the next word or text
fragment given the previous context. This task allows the
model to learn the conditional probabilities of the language
and generate coherent text. Examples include the GPT and
Claude models.

Embeddings are used in LLMs in order to establish a metric
that defines the similarity between word meanings and to
incorporate information about the position of words in a
sentence. This is crucial, since word order affects meaning.
There are three main types of positional embeddings:

4 Absolute positional embedding1: Assigns to each word - or
to each minimal text unit or token - a vector representing
its exact position in the sentence (e.g., first, second, third
position, etc.).

4 Relative positional embedding2: Instead of being based on
absolute positions, it represents the position of a word
relative to the others (e.g. two words before, one word
after, etc.).

4 Rotary positional embedding3: Combines absolute and
relative positional information, using trigonometric
functions to create more complex vector representations.

In a transformer, a simple positional embedding for a word at a
given position can be represented mathematically using sine
and cosine functions. Specifically, a positional embedding E
for a token i with position P can be represented mathematically
in its simplest form as:

1Vaswani (2017).
2Shaw (2018).
3Su (2021).

54Devlin (2018), Liu (2022).

where P is the position of the token in the input sequence, and
d is the dimension of the hidden layers of the transformer.

The choice of positional embedding type can affect LLM
performance by determining the amount and type of positional
information available to the model during training.

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 25

M
A

N
A

G
EM

EN
T

SO
LU

TI
O

N
S

Th
e

ri
se

 o
f L

ar
ge

 L
an

gu
ag

e
M

od
el

s
: f

ro
m

 fu
nd

am
en

ta
ls

 to
 a

pp
lic

at
io

n

26

4 The non-autoregressive model55, used in models such as
Gemini, in which the response is not obtained sequentially
word by word, but is transformed and refined as a whole.

4 Masked language modeling56, popularized by models such
as BERT, which consists of randomly masking some words in
the input text and training the model to predict these
masked words based on the surrounding context. This
technique allows bidirectional learning and a better
understanding of the context. Some LLM architectures (e.g.,
bidirectional transformers) use this technique.

4 Sequence-to-sequence modeling57 (e.g., seq2seq58), where
the model is trained to generate text sequences based on
other input sequences. This is used in models such as T5,
BART or ProphetNET.

4 Contrastive pre-training59, used in models such as CLIP and
ALIGN60, involves training the model to identify text-image
pairs that are semantically related , allowing it to learn
multimodal representations and transfer knowledge
between different modalities61.

LLM pre-training is a computationally intensive process that
requires enormous amounts of data, time and hardware
resources. The largest models can have on the order of 1 trillion
(1012) parameters and require thousands of high-end GPUs for
weeks or months of training. This makes pre-training extremely
expensive and affordable for only a few companies and
organizations in the world with the necessary resources.

Quantification

During LLM training, neuron weights are adjusted to make
more accurate predictions. These weights are typically stored as
high-precision numbers, which can result in large and
computationally expensive models.

Post-training quantization is a technique62 that allows the
accuracy of model parameters to be reduced without
significantly affecting model performance. For example, neural
networks that store their parameters in 32-bit floating-point
numbers can be switched to using only 16-bit or 8-bit numbers,
depending on the type of quantization. This results in smaller
and faster models because they require less memory and, with
the right hardware, can perform operations more efficiently.

Recently, there has been a trend to develop small language
models (SLMs), or even "tiny LLMs"63, models that maintain high
performance despite their much smaller size. These compact
models are achieved by combining techniques, including post-
training quantization.

By skillfully applying these techniques, SLMs and tiny LLMs can
in some cases achieve performance comparable to that of
much larger models64, making them attractive for applications
where computational or memory resources are limited.

55Xu (2021).
56Devlin (2019), Sinha (2021).
57Lee (2022).
58Sutskever (2014).
59Zeng (2023).
60Jia (2021).
61Cui (2022).
62Li (2024).
63Tian (2024).
64Fu (2024).

Figure 6. LLM fine-tuning.

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 26

LLMs, like other deep learning models, learn by adjusting their
parameters to minimize a loss function. This function measures
the difference between the model's predictions and the
expected outcomes, and guides the model toward better
performance.

The choice of loss function depends on the type of task for
which the LLM is being trained. For example, for a model that
predicts the next word in a sentence (autoregressive language
modeling), a common function is cross-entropy. This function
compares the probability distribution of the words predicted
by the model with the actual distribution observed in the
training data.

Mathematically, the cross-entropy loss function for an
autoregressive model can be expressed as the sum of the
negative logarithms of the probabilities assigned to the correct
words at each position in the sequence.

Specifically, given a loss function such as cross-entropy and a
training typology such as autoregressive language modeling,
the loss function to be minimized can be defined as:

where φ represents the model parameters, i refers to the
number of tokens in a given sequence of N tokens, P is the
probability of predicting the token i as a function of the
sequence x of previous tokens.

When fine-tuning the model embeddings, specialized loss
functions can be used to fine-tune the vector representations of
the words. Some popular options are:

4 Cosine similarity loss: adjusts embeddings so that similar
words have more similar vectors.

4 Mean square error loss: minimizes the quadratic difference
between predicted and expected embeddings.

4 Multiple Negative Ranking Loss: associate embeddings of
related words so that they are closer together than those of
unrelated words.

4 Triplet, Matryoshka or contrastive loss: more advanced
variants that consider relationships between trios or
groups of embeddings.

Careful selection of the loss function is crucial for training
effective and efficient LLMs that can capture the nuances of
natural language.

27

Training LLM: loss functions Fine-tuning, instruction-tuning and RAG

Fine-tuning is the process of adapting a pre-trained LLM to a
specific task using a smaller data set. This technique makes it
possible to take advantage of the general knowledge acquired
during pre-training and specialize it to achieve high
performance on the target task.

The main goal of fine-tuning (Figure 6) is to adapt a pre-trained
LLM to a specific task, such as sentiment classification, question
answering, machine translation, or summary generation. During
this process, the model learns to use its general knowledge of
the language and apply it effectively to the specific domain and
requirements of the task at hand. Commercially available LLMs,
whether proprietary or open source, are typically pre-trained
(and therefore general-purpose), but have not been fine-tuned
to adapt to a specific purpose.

Fine-tuning has several important advantages:

4 Leverages prior knowledge: By starting from a pre-trained
model, fine-tuning allows the vast general knowledge of the
language acquired during pre-training to be leveraged,
accelerating learning and improving performance on the
specific task.

4 Requires less data and resources: Compared to training
from scratch, fine-tuning requires much less labeled data
and computational resources, making it more accessible
and cost-effective for a wide range of organizations and
applications.

4 Enables specialization: Fine-tuning allows LLMs to be
tailored to specific domains and tasks, resulting in highly
specialized and effective models for specific applications.

4 Facilitates learning transfer: Fine-tuned models can
receive additional fine-tuning for related tasks, enabling
learning transfer and the creation of even more specialized
models with relatively little additional data.

Despite its benefits, fine-tuning also presents some challenges:

4 Overspecialization65: If the model is fine-tuned on a data
set that is too specific, it may lose some of its generalization
ability and perform poorly on unknown or slightly different
data.

65Wang (2024).

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 27

M
A

N
A

G
EM

EN
T

SO
LU

TI
O

N
S

Th
e

ri
se

 o
f L

ar
ge

 L
an

gu
ag

e
M

od
el

s
: f

ro
m

 fu
nd

am
en

ta
ls

 to
 a

pp
lic

at
io

n

28

4 Catastrophic forgetting66: During fine-tuning it is possible
for a model to forget previously learned critical knowledge.

4 Instability67: The fine-tuning process can be sensitive to
factors such as weight initialization, hyperparameters and
data selection, which can lead to inconsistent results or
variations in performance.

4 Bias inheritance68: Models that have been fine-tuned may
inherit and amplify biases present in both pre-training and
fine-tuning data, which requires careful consideration and
mitigation.

There are several types of fine-tuning to choose from,
depending on how much the initial model needs to be modified
to fit a task in a more specific domain. The main methods are:

4 Supervised fine-tuning69: This method require labeled
input and response data sets from the LLM that are used to
improve its response to specific tasks. A popular method of
supervised fine-tuning is called “instruction-tuning”70, which
consists of tuning the model's responses to what is
expected by its users through interactions with the model.

4 Reinforcement learning: These methods are based on
reinforcement learning and focus on improving the quality
of the LLM response, in this case based on user feedback or
reward models (e.g., direct optimization by preference71).

4 Unsupervised fine-tuning72: This is a method that does not
require labeled data sets, but relies on retraining the model
with the same methods used during pre-training (e.g.,
predicting the next token).

4 Parameter efficient73: Fine-tuning (PEFT): Other fine-tuning
methods aim to increase efficiency and reduce the effort
required to retrain the model. For example, techniques
based on LoRA74 (low-rank adaptation), such as QLoRA or
LongLoRA75, allow fine-tuning of the model without
changing its weights and store the knowledge learned
during the fine-tuning process in additional model
parameters.

In many LLM use cases, it is not necessary to use fine-tuning to
improve the model´s capabilities in a specific domain.
Augmented Retrieval Generation76(RAG) is a technique that
improves LLM performance by using knowledge sources
external to the model.

RAG techniques (Figure 7) work by searching a database for
documents similar to or related to the input prompt. This search
and its results are added to the LLM response generation to
enrich it by providing a specific context.

Figure 7. Operation of the RAG.

66Luo (2024).
67Zhang (2024).
68Zhang (2024).
69Ovadia (2024).
70Zhang (2023).
71Rafailov (2023).
72Zhou (2023).
73Xu (2023).
74Dettmers (2023).
75Chen (2023).
76Lewis (2020) and Neelakantan (2022).

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 28

29

77Wan (2024).
78Abhyankar (2024).
79Goyal (2024).
80Lester (2021).
81Banerjee (2023).

Deployment and use

Once trained and validated, the LLM needs to be deployed in a
production environment for use in real applications. This
involves integrating the model into existing systems and
workflows, and creating interfaces and APIs to interact with it.

There are several key aspects to this process, including
integration and monitoring.

Integration with systems and workflows

4 Infrastructure77: LLMs are typically large and
computationally intensive models that require a robust
infrastructure for their implementation. This may include
the use of specialized hardware, such as GPUs or TPUs, and
cloud computing platforms optimized to perform the
inference process efficiently.

4 Interfaces and APIs78: To facilitate the use of the LLM in
applications and services, it is necessary to develop
interfaces and APIs that allow other systems to interact with
the model in an efficient and secure manner. This may
include endpoints, client libraries in various programming
languages and graphical user interfaces for non-technical
users.

4 Integration with other components: In many cases, LLMs
are part of a larger system that includes other components
such as databases, natural language processing services
and end-user applications. Seamless and efficient
integration of the LLM with these components is critical to
ensure optimal performance and user experience.

Monitoring and maintenance

4 Performance monitoring79: Once implemented, it is
essential to closely monitor LLM performance under real-
world conditions. This involves tracking metrics such as
latency, throughput, accuracy and resource usage, as well as
setting thresholds for resource consumption and cost, and
alerts to detect and address any degradation or anomalies.

4 Updating and retraining80: As new data becomes available
or areas for improvement are identified, it may be necessary
to update or retrain the LLM. This requires a well-defined
process to collect and prepare new data, perform fine-
tuning, and deploy the updated version of the model
without service interruptions.

4 Version management81: With continuous upgrades and
enhancements, it is important to maintain strict version
control of the LLM and its associated components. This
facilitates reproducibility, debugging and the ability to
revert to previous versions if necessary.

As can be seen, LLM development and deployment is a complex
and multifaceted process that requires careful consideration of
multiple aspects, from data selection and preparation to
implementation and responsible use of the model. A thorough
understanding of the key components, such as pre-training,
fine-tuning and embedding, as well as an awareness of the
associated challenges and risks, is essential to harnessing the
full potential of LLMs in an ethical, sustainable and cost-effective
manner that is aligned with each organization's objectives.

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 29

M
A

N
A

G
EM

EN
T

SO
LU

TI
O

N
S

Th
e

ri
se

 o
f L

ar
ge

 L
an

gu
ag

e
M

od
el

s
: f

ro
m

 fu
nd

am
en

ta
ls

 to
 a

pp
lic

at
io

n

30

LLM architecture

LLM architecture refers to the structure and organization of the
neural networks that make up these models. The choice of
architecture and its components significantly impacts the LLM's
performance, efficiency and capabilities. This section examines
the major architectures used in LLMs and their characteristics,
advantages, and limitations.

Transformers: the state of the art in LLMs

Introduced in 2017, transformers have become the dominant
architecture for LLMs82. Unlike previous architectures based on
recurrent neural networks (RNNs) or convolutional neural
networks (CNNs), transformers rely solely on attentional
mechanisms to process and generate text sequences (Figure 8).

The transformer architecture consists of two main components:
the encoder and the decoder, and there are transformers with
encoder only, decoder only, or both components. The encoder
processes the input sequence and generates a contextual
representation for each token, while the decoder generates the
output sequence from the encoder representation and previous
predictions.

The key to transformers is the attention mechanism, which
allows the model to pay attention to different parts of the input
sequence (encoder attention) and to previous predictions
(decoder attention) to generate the next word or token. This
allows long-term dependencies to be captured and coherent
sequences to be generated.

Transformers also introduce the concept of multi-head
attention, where multiple attention mechanisms operate in
parallel, allowing the model to capture different types of
relationships and patterns in the data.

The Transformer architecture has demonstrated exceptional
performance on a wide range of natural language processing
tasks, and has been adopted by most state-of-the-art LLMs.

Transformers variants and extensions

Since the introduction of transformers, numerous variants and
extensions have been proposed to improve their efficiency,
scalability and modeling capabilities.

4 One popular variant is the bidirectional transformer, which
allows the model to consider each token's left and right
context. This is achieved by using a masked language
modeling (MLM) pre-training goal, where some tokens are
randomly masked and the model must predict them based
on the surrounding context.

4 Another variant is the Generative Transformer, such as GPT,
which uses a one-way language modeling approach. This
allows efficient and consistent text generation because the
model can only consider the left context of each token.

4 Extensions have also been proposed to make transformers
more efficient and scalable, such as the sparse transformer,
which uses sparse attention to reduce computational
complexity, and the compressed transformer, which uses
compression techniques to reduce model size.

Figure 8. Operation of a transformer.

Input query to the model

Input is broken down into units (tokens).

The embedding model processes and assigns numerical
representations to each tokens.

Positional information is added for the model to understand
relations between words and context.

Encoder uses self-attention to figure out which words are
important and how they relate to each other, processing in
parallel the data in N layers.

Decoder considers previous context and translated parts
using attention.

Decoder takes translated information from the encoder and
generates a new answer.

Answer is reversed and presented in a coherent manner.

1

2

3

4

5

6

7

8

82Vaswani (2017).

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 30

Prompt Engineering in LLMs: Principles and Best Practices

Prompt engineering refers to the process of designing and
optimizing prompts to get the best possible results from LLMs. This
emerging discipline includes a set of principles and best practices
that allow you to take full advantage of the capabilities of these
models. Among them are:

4 Be clear and specific: The instructions given to the model
should explicitly state the format, length, and level of detail
expected in the response. For example, instead of simply asking
"Analyze the financial situation of company X," it is better to
give an instruction such as "Write a 1000-word report on the
financial situation of company X, covering its profitability,
liquidity, solvency, and future prospects".

4 Break down complex tasks: It is useful to break down problems
into more manageable subtasks for LLMs. For example, instead
of asking "Develop a strategic plan for company Y", subtasks
such as "Conduct a SWOT analysis of company Y", "Define the
key strategic objectives for company Y", "Propose initiatives to
achieve each objective", etc. can be requested.

4 Provide illustrative examples (few-shot learning): A few well-
chosen examples can go a long way in communicating the
desired task. For example, if you want to create value
propositions for products, you could give two examples: "Our
CRM software enables sales teams to close deals 50% faster"
and "Our wellness app helps employees reduce stress and
increase their productivity by 25%".

4 Ask for step-by-step reasoning: Asking the LLM to verbalize its
thought process often leads to more robust results. This is
especially useful for business analysis or problem-solving
tasks. For example, "Describe step-by-step how you would
calculate the ROI of this investment project."

4 Ask for references used: Instruct the LLM to provide references
to the documents used in its argument, including citations to
the original text to which it has access.

4 Ask the LLM to adopt a persona: Before the main task, you can
first instruct the model to adopt a certain role, tone, or style.
For example: "Act as an expert financial analyst and provide an
objective assessment of company X". This will help guide its
behavior.

31

4 Leverage external knowledge: By providing additional
information, the LLM's knowledge base can be supplemented.
For example, to answer questions about a specific industry, one
could first retrieve relevant industry reports and feed them into
the model.

4 Iterate and refine systematically: By continuously evaluating
model performance, areas for improvement can be identified
and prompts adjusted accordingly. Quantitative metrics and
qualitative judgments from domain experts can guide this
iterative process.

By applying these prompt engineering principles, LLMs are
statistically proven to deliver a more accurate and reliable result.

All things considered, a bad prompt for an LLM to write a column
on prompt engineering would be, "Write an article on prompt
engineering."

And a good prompt for that column would be:

"Act as an artificial intelligence expert and write a 600-word
outreach column on the key principles of prompt engineering to
get the best results from LLMs. Structure the column with a brief
and engaging introduction, 4-5 paragraphs covering the main
points (be specific, break down tasks, give examples...), and a
conclusion with the benefits of applying these techniques. Use an
informative but rigorous tone, suitable for a business audience.
Include concrete examples to illustrate the ideas".

Sources: OpenAI prompt engineering guide1, Anthropic Claude
Opus support and own elaboration.

1OpenAI (2024).

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 31

M
A

N
A

G
EM

EN
T

SO
LU

TI
O

N
S

Th
e

ri
se

 o
f L

ar
ge

 L
an

gu
ag

e
M

od
el

s
: f

ro
m

 fu
nd

am
en

ta
ls

 to
 a

pp
lic

at
io

n

32

Comparison to previous architectures

Before transformers, the dominant architectures for sequence
modeling were recurrent neural networks (RNN), such as long
short-term memory (LSTM) and gated recurrent unit (GRU), and
convolutional neural networks (CNN).

4 RNNs can capture long-term dependencies in sequences,
but suffer from problems such as gradient vanishing and
difficulty in parallelizing training. In addition, RNNs have
difficulty capturing very long dependencies due to their
sequential nature and the use of constant range recurrence.

4 CNNs can capture local patterns in sequences and are
computationally efficient, but have difficulty modeling long-
term dependencies and require a fixed context size.

In contrast, transformers overcome these limitations by using
attention mechanisms that can efficiently capture long-term
dependencies in parallel. In addition, transformers are more
flexible in handling variable-length sequences and can be pre-
trained on large amounts of unlabeled data.

The transformer architecture has revolutionized the field of LLM
and has enabled significant advances in a wide range of natural
language processing tasks. However, challenges such as the
scalability, interpretability, and efficiency of these models
remain. As research continues, new architectures and
techniques are likely to emerge that will overcome these
limitations and take LLMs to new heights of performance and
capability.

LLMOps

Machine Learning Operations (MLOps) is a methodology and
set of practices designed to manage the complete lifecycle of
machine learning models, from development and training to
deployment and maintenance in production.

In recent years, an adaptation of the MLOps methodology
specifically for LLMs has emerged, known as LLMOps (Large
Language Model Operations). This discipline focuses on
efficiently managing the entire LLM lifecycle, from development
and training to deployment and maintenance in production
environments.

LLMOps integrates traditional software development processes
with tools and techniques designed to address the unique
challenges of large language models. These challenges include:

4 Managing large amounts of data: LLMs require massive
amounts of training data, which implies the need for
scalable and efficient storage and processing
infrastructures.

4 Scaling of computational resources: LLM training and
inference require massive computational resources, which
calls for the use of parallelization and distribution
techniques, as well as optimizing the use of specialized
hardware such as GPUs and TPUs.

4 Monitoring and maintenance: Once deployed in
production, LLMs must be closely monitored to detect and
correct performance issues, biases, risks such as
hallucinations, and model degradation over time.

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 32

33

4 Versioning and reproducibility: Given the size and
complexity of LLMs, it is critical to maintain strict version
control and maximize the reproducibility of experiments
and results.

To address these challenges, LLMOps relies on a number of
specific tools and frameworks, such as MLFlow83, CometML84
and Weights & Biases85. These platforms provide capabilities for
experiment tracking, model management, performance
monitoring, and cross-team collaboration.

In addition, LLMOps promotes practices such as process
automation, continuous testing, comprehensive
documentation and model governance. This not only improves
the efficiency and quality of LLM development, but also ensures
its ethical and responsible use.

Challenges

The development and deployment of LLMs presents a number
of significant challenges that must be addressed to ensure their
responsible, ethical, and secure use. This section explores some
of the key challenges that organizations face in deploying and
using LLM.

Biases, hallucinations and reliability

One of the biggest challenges of LLMs is the presence of biases
and hallucinations in their results and predictions. Biases can
arise from several sources, such as biased training data,
limitations of model architectures, or human biases implicit in
annotation and evaluation tasks. On the other hand,
hallucinations refer to the generation of information or content
that appears plausible but is not based on facts or knowledge
acquired during training.

Biases in LLMs can manifest themselves in a variety of ways,
such as perpetuating gender, race, or age stereotypes,
discriminating in classification tasks, or generating offensive or
inappropriate content. These biases can have serious
consequences, especially when LLMs are used in sensitive legal,
financial or medical applications. In turn, hallucinations can lead
to the dissemination of incorrect or misleading information,
which can have a negative impact on user confidence and the
credibility of LLM-based applications.

To address the challenge of bias, it is necessary to develop
robust techniques to detect, measure, and mitigate its presence
in LLMs. This includes the creation of bias-specific evaluation
datasets, the use of fairness metrics, and the application of bias
elimination (debiasing) techniques in both pre-training and
fine-tuning. In addition, it is critical to establish ongoing
auditing and monitoring processes to ensure that LLMs remain
unbiased over time.

To address hallucinations in LLMs, several methods are being
developed that focus on improving training data, applying
robust regularization techniques, and using human feedback to
tune model responses. In addition, architectural changes to the
models are being investigated to make them inherently less
prone to hallucination. Text generation methods and input
context can also be optimized to reduce hallucinations. Human
supervision and rigorous evaluation are essential to detect and
correct inaccurate information. Also, the development of
specific tools, such as hallucination assessment models and
obfuscation techniques, can help improve the accuracy of LLMs.

83Zaharia (2018).
84CommetML: https://www.comet.com/
85Weights and biases: https://wandb.ai/site

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 33

M
A

N
A

G
EM

EN
T

SO
LU

TI
O

N
S

Th
e

ri
se

 o
f L

ar
ge

 L
an

gu
ag

e
M

od
el

s
: f

ro
m

 fu
nd

am
en

ta
ls

 to
 a

pp
lic

at
io

n

34

Explainability and accountability

Another major challenge with LLMs is their opacity and lack of
explainability. Due to their complexity and the nature of their
architectures, it is difficult to understand how these models
arrive at their results.

This lack of transparency raises accountability issues, especially
when LLMs are used in highly sensitive contexts where
decisions significantly impact individuals (e.g., the use of LLMs
in medicine, pharmaceutical research, critical infrastructure, or
access to the labor market). Without a clear understanding of
how these models work, it is difficult to determine liability in the
event of errors or unintended behavior.

To address this challenge, it is necessary to develop techniques
and tools that allow for greater interpretability and
explainability of LLMs. This includes methods for visualizing and
analyzing internal attention mechanisms, attribution techniques
for identifying the most relevant parts of the input, and
approaches for generating natural language explanations of
model predictions.

In addition, it is important to establish clear accountability
frameworks that define the responsibilities of LLM developers,
implementers and users, as proposed in Europe by the AI Act.
This may involve the creation of standards and guidelines for
the ethical development of LLMs, external monitoring and
auditing mechanisms, and channels for stakeholders to raise
concerns.

Confidentiality and information protection

LLMs are often trained with large amounts of data that may
contain personal, sensitive or confidential information. In
addition, when used in real-world applications, these models
may be exposed to user input, which may include private data.

This poses significant privacy and security challenges, as LLMs
may memorize and reproduce sensitive information from their
training data, or be vulnerable to attacks that attempt to extract
private data through carefully crafted queries.

To address this challenge, it is necessary to develop privacy
preserving techniques in LLM training and deployment (e.g.,
Digger86 to detect protected information, the use of dummy
data87 during training to detect copyrighted material).

In addition, it is crucial to establish robust security and access
control protocols to protect LLMs and their associated data
from unauthorized access or malicious use. This may involve
the use using authentication and authorization techniques,
security monitoring and anomaly detection.

Rational use of resources

LLM training and deployment requires massive amounts of
computational resources, storage and power. With models
reaching hundreds of billions or even trillions of parameters,
the financial and environmental cost of developing and
operating these systems can be very significant88.

This high resource consumption poses efficiency, scalability
and sustainability challenges. As the demand for larger and
more powerful LLMs continues to grow, ways must be found to
optimize their performance and reduce their resource footprint.

To address this challenge, several research directions are being
explored. One is the design of more efficient model
architectures, such as using sparse attention mechanisms or
compression techniques that reduce the size and
computational complexity of LLMs without significantly
compromising their performance.

86Li (2024).
87Meeus (2024).
88iDanae 1T24 (2024).

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 34

35

Research is also underway to improve continuous pre-training
techniques89 and continuous fine-tuning90, which seek to
integrate the ability to use information from diverse domains
without relying on extensive and costly retraining with specific
new data. This aims to integrate the ability to use information
from different domains without relying on extensive and costly
retraining with specific new data. Progress is also being made in
using innovative systems and designing green AI algorithms
that address the computational and environmental costs
associated with AI (e.g., Qsimov Quantum Computing's
GreenLightningAI system91 develops incremental retraining and
provides straightforward interpretability).

Another direction is the development of more sustainable
computing infrastructures and platforms, such as using
specialized low-power hardware, more efficient cooling
systems and renewable energy sources to power the data
centers where LLMs are trained and deployed.

In addition, it is important to promote practices of rational and
shared use of resources, such as reusing and adapting pre-
trained models instead of training new models from scratch for
each task, and the sharing of resources and knowledge
between organizations and research communities.

Other challenges

Among the many additional challenges that organizations face
in developing, implementing, and using LLMs, the following are
worthy of brief mention because of their importance:

4 Dependency and lock-in: Organizations that rely on LLMs
provided by third parties may face dependency and lock-in
risks, especially if the models are based on proprietary data
or infrastructure. It is important to consider diversification
strategies and contingency plans.

4 Security risks and malicious use92: LLMs can be vulnerable
to adversarial attacks, such as poisoned data injection or
reverse engineering. They can also be used maliciously to
generate misinformation, spam, or misleading content. It is
essential to implement robust security measures and design
models with safeguards against misuse.

4 Intellectual property and licensing issues: The use of LLM
raises questions about intellectual property and licensing of
training data, models and generated results. Additionally,
there is a risk of theft of information or personal data from
users launching queries to LLM deployed in third-party
clouds. Regulatory compliance and ethical frameworks are
necessary to balance the rights of creators, users and the
public interest, and, for organizations, to avoid legal and
compliance risks.

4 Scalability of LLM architecture93: An additional challenge
is the scalability of transformers as the size of sequences and
models increases. Attention mechanisms have quadratic
complexity concerning sequence length, which limits their
applicability to very long sequences.

89Yıldız (2024).
90Mehta (2023).
91iDanae 1T24 (2024).
92Pankajakshan (2024).
93Rae (2021).

Auge LLM-Eng- Vdef_Maquetación 1 30/05/2024 23:48 Página 35

