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Interpretability techniques: state of the art

“By far the greatest danger of artificial intelligence is that people conclude too soon 
that they understand it“. 

Eliezer Yudkowsky40
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Concept 

The scientific community41,42  has proposed numerous 
definitions of model “interpretability“ and “explainability”, and 
tends to make a certain distinction between them, although in 
practice these concepts are often used interchangeably. 
Generally speaking, interpretability is linked to the ability to 
explain to a human being the results of a model (its cause-effect 
relationship), while explainability is associated with the 
understanding of an algorithm’s internal logic, how it is 
designed and trained, and the steps followed in decision 
making to reach a particular result. 

Some academic definitions in this regard are: 

4 Interpretability is the ability to explain or present in terms 
that are understandable to a human being43. 

4 Interpretability is the degree to which a human being can 
understand the cause of a decision44. 

4 The explainability of a model output is the description of 
how the output of the model was produced45. 

4 Explainability is the extent to which the internal mechanics 
of a machine learning system can be explained in human 
terms46. 

The need for model explainability and interpretability has 
favored the emergence of increasingly sophisticated techniques 
for local and global interpretability of model results, and there is 
currently some level of standardization and convergence in the 
use of certain techniques (e.g. PDP, LIME or SHAP). 

At the same time, these techniques do not completely solve the 
problem of interpretability and may yield contradictory or 
biased results under certain circumstances, which coexists with 
other factors that may impact model interpretability, such as: 

4 The reproducibility of results, the model development and 
implementation process47, the consistency of the model’s 
predictions and the explanation of the most probable 
sequence of predictions. 

4 Potential bias48 in the input data. 

4 Fairness49.  

4 Accuracy of explanation50.  

4 Conceptual soundness of the model51.  

To overcome several of these difficulties, some researchers52   
are developing alternative approaches for improving AI model 
interpretability, primarily focused on the development of 
inherently interpretable models (”white boxes”). 

This section describes the main interpretability techniques, 
considered standard in the industry, and includes the state of 
the art on white-box development. 

 
40Eliezer Shlomo Yudkowsky (b. 1979), American researcher and writer specializing 

in decision theory and artificial intelligence, known for popularizing the idea of 
Friendly Artificial Intelligence and advocating the Singularity. 

41Gall, R. (2018). Editor at Thoughtworks and The New Stack. 
42Broniatowsky, D. (2021). Associate Professor, Department of Engineering 

Management and Systems Engineering, George Washington University. 
43Doshi-Velez, F., et al. (2017). Professor of Computer Science at the Paulson 

School of Engineering and Applied Science, Harvard University. 
44Miller, T. (2019). Lecturer in the School of Computing and Information Systems, 

University of Melbourne. 
45Broniatowsky D. (2021). 
46Gall, R. (2018). 
47Leventi-Peetz, A.-M., et al. (2022). Scientist of the German Federal Office for 

Information Security. 
48Zhou, N., et al. (2021). Senior financial analyst at Wells Fargo. 
49Ibid. 
50Jonathon Phillips et al. (2021). Professor of Computer Science and Engineering, 

National Institute of Standards and Technology (NIST). 
51Sudjianto, A., et al. (2021). 
52Ibid. 
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Most common interpretability techniques 

The most commonly used interpretability techniques can be 
grouped according to their approach53: post-hoc interpretability 
and inherently interpretable models. There are also 
complementary strategies to improve model understanding. 

Post-hoc interpretability 

Post-hoc interpretability or black box model interpretability 
techniques focus on explaining the output of already trained 
models, based on the information provided by the weights 
assigned to each input variable and the model results. These 
techniques are useful for understanding model results, 
although they do not provide information about the training 
process or explain the internal logic of the algorithm. 

They are usually divided into global and local interpretability 
techniques, in reference to whether the technique explains the 
entire model as a whole or only the results in a subset of 
observations or data. 

The most common post-hoc interpretability techniques are as 
follows (for a more comprehensive inventory, see Fig. 6): 

4 PDP (Partial Dependence Plots). This technique allows 
visualizing the influence of each individual variable on the 
model output, excluding the rest of the variables. 

4 LIME (Local Interpretable Model-agnostic Explanations). This 
technique allows the explanation of results at the local level, 
i.e. the explanation of the results of a particular specific 
observation, based on information from other similar cases. 

4 SHAP (SHapley Additive exPlanations). This technique 
allows the local and global explanation of a model’s results, 
that is, the explanation of the influence of each variable on 
model observations, and the importance of each variable in 
the model’s global results. 

4 Anchors. This involves the search for decision rules that 
explain the result. 

Inherently interpretable models 

Inherent interpretability focuses on the development of “white 
box” models that are interpretable by design or that can be 
made interpretable by construction, through a series of 
conditions dependent on the type of model (e.g. neural 
networks54, in particular ReLu55, and tree-based models56, 
among others). 

These models allow an explanation of the algorithm’s internal 
logic and the sequence of steps taken to reach a specific result, 
and therefore allow a better understanding of the results, 
although their applicability in complex problems may be more 
limited, depending on the type of algorithm used. 

Complementary strategies 

Some strategies are used to support model interpretability, 
such as simplifying the model to facilitate its interpretation, 
using “business sense” variables, analyzing data to identify 
biases or lack of fairness in the inputs that may hinder 
explainability, or analyzing model development or model 
implementation reproducibility.  

Figure 6. Overview of interpretability techniques.

 
53iDanae (2022). 
54Yang, Z., et al. (2019). Department of Statistics and Actuarial Science, University 

of Hong Kong. 
55Sudjianto. A., et al. (2011). 
56Sudjianto. A., et al. (2021). 
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Post-hoc interpretability 

1. PDP 

PDP plots57   (Partial Dependence Plots) show how an AI model’s 
prediction varies as a function of one or two independent variables 
in the prediction, i.e. the marginal effect of the predictors. Thus, 
they make it possible to evaluate the relationship between the 
independent and dependent variables. 

Synthetically: 

4 PDPs show the average variation of the prediction 
graphically on a curve. 

4 This average variance is obtained by varying a predictor for 
all the observations in the dataset, and then obtaining the 
average impact on the prediction. 

4 A variant of the PDPs are the Individual Conditional 
Expectation (ICE)   graphs, which similarly show how a 
prediction varies for each specific observation if one of the 
model’s predictors is modified while keeping the rest 
constant. 

2. LIME 

LIME59 (Local Interpretable Model-agnostic Explanations) is a 
local method that tests how the predictions of a model vary 
when the input data are perturbed. To do this, LIME applies the 
following steps: 

4 Generate synthetic data around an observation in the input 
data: LIME takes as a starting point a single prediction and 
the input data that generated it, and generates new input 
data by perturbing this observation, obtaining the 
corresponding predictions by the AI model. 

4 Train a simple model on synthetic data: the resulting dataset 
composed of the perturbed input data and the predictions 
generated by the model is used to train a model that is 
interpretable (e.g. linear models, decision trees).  

4 Explain the predictions of the simple model as a function of 
the original data: the importance of each variable in the 
prediction is obtained - for example, as a function of its 
coefficients in the regression and its corresponding sign. 

PDPs can be applied to a very common use case in the banking 
industry: rating customers during the lending process to 
determine their probability of default. This example uses an 
anonymized portfolio of mortgage loans with information on 
their performance in the first three years. 

An XGBoost was used, which is a non-additive tree-based 
model, a feature that may make it difficult to explain. The 
variables employed by the model during training include the 
loan amount, its purpose, the borrower's ownership status, 
years of employment in his current job, and the interest rate, 
among others. 

In this context, a business area may seek to understand why the 
model assigns a certain probability of default to a certain 
customer. 

A PDP graph shows the explanation that would be obtained at 
the global level of the variables that have most participated in 
the result, and that would allow us to see the impact that 
different ranges of that variable have on the model’s prediction 
(Fig. 7). 

 

  

 

Figure 7. PDP for the variables “years employed“ (in years), “salary“ (annual 
EUR), “age“ (years) and “interest rate“ (times one). The X-axis represents the 
variable under study itself, and the Y-axis represents the impact that different 
ranges of each variable have on the model’s prediction. 

 
57Friedman, J. H. (2001). Professor in the Department of Statistics, Stanford 

University. 
58Goldstein, A., et al. (2015). Professor in the Department of Statistics, The 

Wharton School, University of Pennsylvania. 
59Ribeiro, M. T., et al. (2016). Researcher at Microsoft Research in the Adaptive 

Systems and Interaction group and Adjunct Professor at the University of 
Washington.
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4 Calculate the explainability: the percentage of explainability 
by LIME is equivalent to the linear model fit coefficient (e.g., 
R2). It follows that the interpretable model yields a good 
approximation of the predictions locally. 

Formally, an explanation using local subrogated models with 
LIME can be defined as: 

where: f is a black box model (e.g. a random forest), g is the model 
that explains f (e.g. a linear regression). L is the loss function to be minimized in the model (e.g. 
mean square error), which LIME minimizes. Ω is the model’s complexity (e.g. number of variables 
selected) decided by the user. G is the set of possible explanations of the model f. arg min represents the value g∈G that minimizes the 
function L(f,g,πX) + Ω(g).. πX represents the amplitude of the perturbations used to 
generate new observations decided by the user. 

3. SHAP 

SHAP60 (SHapley Additive exPlanations) is a model explanation 
method based on Shapley's Value Theorem , which was 
proposed in 1952 to distribute the value of a game among the 
players. SHAP is used to explain the importance of each variable 
(measured as the average change in the model prediction when 
the value of the variable varies) in a particular prediction. 

Specifically, SHAP uses a combination of baselines, local 
importance functions and Shapley's Value Theorem to calculate 
the importance of each variable in an individual prediction. 

In this method: 

4 Shapley values are calculated, where the independent 
variables are interpreted as players who collaborate to 
receive the payout.  

4 The Shapley values correspond to the contribution of each 
variable to the model prediction. 

4 The payout is the actual prediction made by the model 
minus the average value of all predictions. 

4 Players “split“ this payout according to their contribution, 
and this split is calculated by Shapley's values and reflects 
the importance of each variable. 

This method also makes it possible to obtain interpretations at 
a global level by calculating the average of the contributions of 
each variable for each model prediction.  

Formally, Shapley values can be defined as the contribution of 
each variable to the outcome of the model, weighed as a 
function of all possible combinations of variables used: 

where val is the prediction of the model for variables included 
in the set S, with respect to the prediction for variables not 
included in S: 

where: x is the vector of variables used in the model. S is a subset of x. p is the number of variables used in the model. dP(x∉S) represents the set of variables not included in S for 
which the integration is performed. E is the expected value of the prediction of X with the f 
model. 

Using these values, SHAP can be used to obtain a local 
explanation to the model as: 

Finally, SHAP is also capable of calculating global explanations 
through the aggregation of Shapley values in a data set. 

 
60Lundberg, S. M., et al. (2017). Research Fellow at the Paul G. Allen School of 

Computer Science, University of Washington. 
61Shapley, L. (1953). Professor at the University of California, Los Angeles, in the 

departments of Mathematics and Economics. 
62Ribeiro, M. T.; Singh, S.; Guestrin, C. (2018). Researcher at Microsoft Research in 

the Adaptive Systems and Interaction group and Adjunct Professor at the 
University of Washington.
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Use case: Loan origination in the 
banking sector. Use of SHAP 

If SHAP is applied on the same case for which a PDP was used, 
additional local information about a decision of the model is 
obtained for a given customer.  

In this case, using SHAP on a sample of observations results in 
completely different Shapley values with a variable sign 
depending on the characteristics of the borrower. Even for 
clients receiving the same interest rate, the influence of this 
variable appears to vary due to the greater or lesser importance 
of the other variables in the model.  

However, a “business sense” trend is observed: the higher the 
interest rate, the more this variable in the model contributes to a 
higher probability of default. Therefore, using the mean of the 
Shapley values for each variable to provide an overall 
interpretation of the model can lead to errors in the explanation 
if this is understood as a generalization (Fig. 8). 

Shapley's values provide an explanation for particular cases 
such as the following, where it is observed that the probability 
of default  of a client is determined by the mortgage loan 
conditions, credit history and employment conditions (e.g., 
salary) (Fig. 9). 

  

Figure 8. Shapley values for the “interest rate“ variable in the whole sample 
versus that variable. The gray bar graph shows the distribution of the 
variable. 

 

 

Figure 9. Shapley values influencing the prediction of a client with a denied 
loan2.  

 
1Scale of the graph shown in log-odds (0 corresponds to a 50% probability). 
2Log-odds scale  graph. 

4. Anchor 

Anchors62 is a method that explains individual (i.e. local) 
predictions of black box classification models by finding 
decision rules called “anchors“ that explain the outcome. 

4 As in LIME, a single prediction and the input data that 
generated it are taken as a starting point, and new input 
data are generated by perturbing this observation, 
obtaining the corresponding predictions by the AI model. 

4 The local explanation of the prediction is obtained by 
looking for “if-else“ rules that are able to explain the 
outcome of the model. A rule is considered to explain the 
prediction if changes in other independent variables not 
considered in the rule do not modify it. 

Formally, an anchor A is defined as: 

where: f is a black box model. D is an arbitrary distribution used to pertub x. x is an observation of the dataset to be explained, and z is a 
sample of  D. Prec is the accuracy of the explanation and τ is the 
accuracy required.. 

One way to find an anchor given any given distribution D is to 
look for the precision to exceed a threshold with a certain 
probability (1 - δ), such that: 

 

63Yang, Z., et al. (2019). Research Fellow in the Department of Statistics and 
Actuarial Science, University of Hong Kong.
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Development of inherently interpretable models (white 
box) 

Inherently interpretable (white box) models are based on the 
design of algorithms that, by design, are interpretable and allow 
the explanation of results at both the global and local levels. 

White box models are generally grouped according to the type 
of algorithm used: 

4 Linear models, such as linear or logistic regressions. 

4 Tree-based models, such as decision trees or random trees. 

4 Rule-based models, such as rule-based systems. 

4 Deep neural networks, with activation functions such as 
ReLU or the use of intermediate layers, subject to certain 
restrictions that make them inherently interpretable63. 

These models are usually developed with constraints on the 
parameters to be optimized, which allow the models to be 
interpretable unlike black box models, although they are less 
accurate (Fig. 10). These constraints include using only 
“business sense” variables, or restricting: 

4 The number of variables selected by the model for 
prediction.  

4 The number of variables explained by the model. 

4 The degree of complexity of the decision rules. 

4 The number of steps in the prediction.  

4 The depth of the decision trees. 

4 The length and depth of the neural networks. 

Inherently interpretable models provide more accurate results, 
as they allow for a better understanding of the information, 
which in turn leads to better decision making. This is especially 
necessary in those sectors where interpretability is a critical 
factor in final decisions. 

Two aspects relevant to the construction of inherently 
interpretable models are detailed below: the concept and 
development of interpretable supervised and unsupervised 
learning, and the application of other factors in the 
interpretability domain. 

1. Interpretable supervised and unsupervised learning 

Although current research is moving towards the development 
of inherently interpretable models, there is no mathematical 
formalism that fully describes the construction of these models 
under whatever initial conditions and algorithms used. 

The state of the art is the construction of these models under 
initial conditions that make them more easily interpretable or 
equivalent to other interpretable models. One of the ways to 
define this interpretability condition in model training is to 
modify the loss66 function that is minimized during its training, 
including a penalty for low interpretability, which depends on 
an imposed model interpretability condition f: 

 
64Rudin, C., et al. (2022). Professor of Computer Science, ECE, Statistics and 

Biostatistics and Bioinformatics at Duke University. 

Figure 10. Balance between interpretability and predictive capacity by model families (including white and black boxes).
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For example, sparsity is one of the conditions used in model 
development to qualify a model as more explainable with 
respect to the rest. This condition can be added to the loss 
function as: 

such that φ(f) is a regularization function that penalizes the loss 
being proportional to the sparsity of the model (e.g. if the 
sparsity is reduced, that term of the loss function will also be 
reduced). 

Some authors67 have formalized the creation of inherently 
interpretable models for certain families as: models based on 
decision trees (e.g. SIMTree or single-index model tree, which 
generates a single-index model tree for each terminal node), or 
the simplification of networks with ReLu activation function, 
which are shown to be equivalent to a set of local linear 
models. 

Other authors68 have focused on defining the characteristics 
that inherently interpretable models should meet, in order to 
optimize them during the modeling process, such as: 

4 Additivity of the input variables, so that their effects are 
aggregated in the model in a simple way. 

4 Sparsity, and the optimization of models to meet this 
condition.  

4 Linearity of input variables versus model output. 

4 Monotonicity, so that the relationship between the input 
variable and the outcome to be predicted is monotonic for 
as many ranges as possible. 

4 Decoupling of concepts during the neural network training, 
which refers to maintaining as much as possible the 
information about a given concept in specific network paths 
(i.e. in the face of information about the same concept 
passing through a greater number of neurons and paths 
dispersed in the network). 

4 Dimensionality reduction as a visual tool to facilitate post-
hoc explanations to humans.  

2. Other impact factors 

In combination with the challenges shown in this section, there 
are additional key elements that can be considered to improve 
model interpretability, such as model fairness, absence of bias in 
the input data, potential expert components, or adequate 
performance and model control framework to avoid errors in 
model interpretation. 

Because of their relevance, as indicated above69, these elements 
have also been highlighted in the AI Act as essential 
requirements for high-risk AI systems.  

Nowadays, there are multiple techniques and methods to 
evaluate model performance, and to prevent overfitting issues. 
There are also several ways to evaluate the error produced by 
models and the balance between bias and variance error. 

 
65Sudjianto. A., et al. (2021). 
66Rudin, C., et al. (2022). 
67See section on regulation. 
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However, due to constraints on the use of personal data 
introduced by data protection regulations, one of the greatest 
complexities at the moment is in detecting and correcting 
potential biases (e.g. due to race, gender, religion, political or 
sexual orientation, beliefs or social position) in AI models, 
especially when the variables have not been stored and are 
therefore not available for analysis. 

In this regard, several techniques for identifying unbiased input 
variables have been proposed by academia, such as: 

4 Interpretability analysis through Causal Bayesian Networks68 
as a quantification of the degree of model fairness. 

4 Definition69 of fairness metrics, such as demographic parity, 
predictive ratio parity, false positives and equal false 
negatives in segments susceptible to bias. 

Among these metrics, counterfactual fairness provides a 
measure of how similar the results of a model are to individuals 
(observations) with the same characteristics, but with slightly 
different bias-sensitive attributes.   

Advantages and disadvantages of the most common 
interpretability techniques 

As a general rule, there is no interpretability technique that can 
provide a single, global and intuitive explanation for any 
scenario. Interpretability techniques are usually combined 
under various use cases and scenarios to verify that they 
provide reproducible explanations applicable to different 
groups of observations. 

When selecting which of these techniques to use, it is advisable 
to consider the advantages or disadvantages of their 
implementation (Fig. 11). 

Latest trends and challenges 

Despite advances in model interpretability, there are still 
challenges in explaining the results (Fig. 12). 

First, model interpretability is still constrained by a number of 
factors such as the reproducibility of the results70, the model 
training and implementation process, the consistency of model 
predictions, the explanation of the sequence of most likely 
predictions, the biases in the input data, as well as the fairness 
and accuracy of the explanation. 

Secondly, currently available XAI techniques only allow either 
local explanations (i.e. for a single observation or data) or global 
explanations (i.e. for the whole data set). This means there is a 
need to develop techniques that allow midrange explanations, 
i.e. explaining results for groups or subsets of data in a 
consistent manner  . In addition, without an in-depth analysis, 

Figure 11. Comparison of the most common interpretability techniques. 

 
68Oneto, L.,Chiappa, S., (2020) 
69Zhou, N., et al. (2021). Senior financial analyst at Wells Fargo. 
70Leventi-Peetz, A.-M., et al. (2022). 
71While SHAP is able to obtain explanations for subsets through weighted 

averages of Shapley values, these explanations may vary depending on the 
granularity of the subset data. 
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the results yielded by different interpretability techniques at 
different levels may initially appear contradictory (e.g. if 
“average“ global results are compared with local results in a 
particular environment). 

Thirdly, improvements are still needed in the development of 
white box models, since, despite the progress made in recent 
years, these models are still not able to compete in accuracy 
with black box models in complex problems. 

Finally, the need to explain more complex models (e.g. certain 
types of deep neural networks) remains an unresolved 
challenge.  

In this regard, new techniques are being developed to improve 
the interpretability of the models, such as the use of information 
from the intermediate layers of deep neural networks, the 
aggregation of interpretability metrics to measure the 
explainability of the models, the development of adversarial 
models to quantify the degree of explainability, the limitation of 
the parameters to be optimized to increase their interpretability, 
or the use of visualization techniques to facilitate the 
understanding of the results.  

Figure 12. Common challenges in the interpretability of AI models.


